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Optimal Indexing of the Vertices of Graphs * 

By Carl H. FitzGerald 

Abstract. The incidence matrices of various graphs are considered. By reordering the 
points, the bandwidth can be changed. In the cases of rectangular grids in the plane or 
cubic grids in three dimensions, the exact, minimum values of the bandwidth are deter- 
mined. 

In certain numerical analysis problems, it is of interest to index the vertices of a 
graph in such a way that the matrix used to represent an associated system of linear 
equations is as close to diagonal as possible or, equivalently, to index the vertices of a 
graph in a way that minimizes the width of the band of nonzero terms in the incidence 
matrix for that graph. The purpose of this note is to present a few methods of deter- 
mining the minimum possible width in some cases that arise in the numerical solution 
of Laplace's equation. Of particular interest are the first proof of Theorem 2 which 
solves the problem for the common square grid and Theorem 3 which answers the prob- 
lem for the cubic grid. 

As depicted by the solid lines of Fig. 1, let (,, be the graph consisting of vertices 
being points (ij) where i andj are integers such that lil + IjI < n and of edges 
being the straight line segments joining vertices that are exactly one unit apart. The 
vertices are to be indexed with distinct integers. Let 8 be the minimum over all 
indexing of the maximum difference between the numbers assigned adjacent 
vertices. 

THEOREM 1. 8 = n + 1 for n = 1, 2,. 
Proof. Counting down the dotted diagonal at the upper right of Fig. 1, there are 

n + 1 vertices (ij) of (,Y such that i + j = n. Skipping to the third diagonal, there 
are another n + 1 such that i + j = n - 2; and so forth until there are n + 1 such 

Oin 

FIGURE 1 
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that i + j = -n. There are (n + 1)2 points which are counted by this procedure. 
Counting down the diagonals omitted before, there are n points on each of n 
skipped diagonals. Thus, there are (n + 1)2 + n2 = 2n2 + 2n + 1 vertices in (S. For 
any indexing, it takes no more than 2n edges to go from the vertex to which 1 is 
assigned to that which 2n2 + 2n + 1 is assigned. Thus, 2n 3 8 > (2n2 + 2n + 1) 
-1; hence 8 > n + 1. 

It is easy to see this estimate is sharp by indexing the vertices consecutively 
down the diagonal for which i + j = n, then down the diagonal for which 
i + j = n - 1, etc. 

Remark. If the dotted line segments of Fig. 1 are included in 9,, the value for 
the corresponding 8 is unchanged. This modified graph is homeomorphic to a graph 
as depicted in Fig. 2 in which each interior point is the center of an equilateral 
hexagon. 

I~~~~~~ 

FIGURE 2 FIGURE 3 

Consider the square grid G, as depicted by the solid line segments of Fig. 3. The 
vertices are the points (i,j) such that i andj are integers, 1 < ij < n, and the edges 
are the straight line segments joining vertices which are exactly one unit apart. Let 
A\ be the minimum over all indexings of the maximum difference between the 
integers assigned adjacent vertices. 

THEOREM 2. zA = n for n = 2, 3,. 
(This fact is contained in a theorem in the reference.) 
First Proof 
LEMMA. Let G, be indexed. There exists an integer q such that either every column 

or every row of G, contains adjacent points assigned integers r and s such that 
r < q < s. 

Proof Let Si = {integers assigned vertices in the ith column} for 1 < i < n. For 
each i, consider the smallest integer in Si; among these numbers there is a largest 
integer q. Let ii be the index of the Si to which q belongs. 

If, for a particular i, Si has an integer larger than q, there is also a point assigned 
an integer less than or equal to q by choice of q; and thus there is a pair of adjacent 
points in the ith column having assigned numbers r and s such that r < q < s. 
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Hence, if, for each i = 1, 2, ..., n, Si has an integer larger than q, then every 
column has a pair as indicated by the lemma. 

On the other hand, suppose, for some i2, Si2 does not have an integer greater 
than q. Since q belongs to Si, and i4 is not i2, q is greater than every number in Si2 
and less than or equal to every number in Si,. Hence, in each row, there is a pair of 
distinct points assigned numbers r and s such that r < q < s; and, consequently, a 
pair of adjacent points in each column having such assigned numbers. 

Proof of Theorem. Consider the n pairs of integers the lemma says exist. Let r' be 
the smallest of these integers, and s' be the other member of the pair. Then 
r' < q - (n - 1) and q < s' with equality holding in at most one of these 
inequalities since each integer occurs at most once in the indexing. Hence 
s'- r' > n, i.e., A > n. 

That A < n follows by considering the indexing starting at the lowest row of G, 
and numbering across in the same direction on successive rows. 

Remarks. Consider the grids of the types mentioned in Theorems 1 and 2 for 
larger and approximately equal numbers of points. The band width of the incidence 
matrix for the graph mentioned in Theorem 1 is about 1/I/F times that for the graph 
of Theorem 2. 

Clearly, Theorem 2 is sharp for n X m rectangular grids for which m > n. 
Furthermore, if the diagonals going across the n X m grid in one direction are 
included, the estimate of Theorem 2 remains sharp. An optimal indexing is obtained 
by numbering down successive diagonals starting at a corner not on a diagonal. 
Such a grid is homeomorphic to a graph as depicted in Fig. 4 in which each interior 
point is the center of an equilateral hexagon. 

FIGURE 4 

Most of the second proof is concerned with the following question: How can the 
vertices of the grid be indexed so that those labelled 1, 2, . . ., N are adjacent to the 
minimal number of other vertices? Clearly, it is desirable that the vertices labelled 
1, 2, . .., N be close together and in a corner. Thus, the answer found is independ- 
ent of N. Roughly speaking, the proof shows that one scheme is to index starting in 
a corner and progress through the points closest to that corner. 

The value of 8 is then easily determined. A lower bound is found by considering 
the preceding question for N approximately In2. The number of vertices adjacent to 
one of those labelled 1, 2, . .., N, but not indexed with one of those numbers, must 
be less than 6. On the other hand, the indexing previously described has no jumps 
between adjacent vertices larger than this lower bound. 



828 CARL H. FITZGERALD 

Second Proof of Theorem 2. For any subset T of the vertices of G,, let a(T) be 
the number of vertices of G, not in T, but adjacent to points of T. Consider a subset 
S of the vertices of G, with more than n(n - 1)/2 points, but less than n(n + 1)/2 
points. It will be shown that a(S) > n. 

For each i, 0 < i < n + 1, let Ni be the number of points of S in the ith column. 
(Note No = N,+1 = 0.) Let S* be {(ij): (ij) belongs to G, and 1 < j < Ni). 

Let Mi be the number of points in the ith column of G, that are adjacent to 
points of S*, but not in S*. Then, for 1 < i < n, 

Mi = max(Ni+i,NiI) - Ni if Ni+I or Ni,1 > Ni, 

= 1 if Ni+1 < Ni and NiA1 < Ni and Ni < n, 

= 0 if Ni = n. 

Clearly, q(S*) = Enl Mi. 
By considering each column separately, it is easily verified that a(S) > a(S*). 
Similarly, S** is defined to be the subset of Gn having the same number of 

vertices in each row as S* does and these points being the first vertices in the 
respective row. Then a(S) > a(S*) > a(S**). If (ij) is in S**, then every point 
(i',j') forwhich 1 < i' < iand 1 < j' < jis inS**. 

If S** contained no points (ij) for which i + j = n + 1, then S** would be 
contained in {(ij): 1 < i, j < n and i +j < n + 1}. But the last set has only 
n(n - 1)/2 points, which is less than the number of points in S. Hence S** contains 
at least one point (ij) for which i + j = n + 1. If S** contained all the vertices 
(ij) of G, such that i+j = n + 1, then S** would contain {(ij): 1 < i < n and 
1 < j < n and i + 1 < n + 1). The last set has n(n + 1)/2 points which is more 
than the number of points in S. Thus, there exists a point (I, J) of G, such that 
I + J = n + 1 and either (I - 1,J + 1) or (I + 1, J - 1) is a point of G, not in S**. 

Let s be {(ij): 1 < i < I and 1 < j < J}. Adjoin to s the J + 1 row of S** 
making s'. If J + 1 < n, there are two possibilities: 

Case 1. a(s') = a(s), if there are less than I elements in the J + 1 row. 
Case 2. a(s') = a(s) + 1, if there are exactly I elements in the J + 1 row. 
By choice of (I, J), there cannot be more than I elements in the J + 1 row of 

S**. For each successive row up to the nth, similar cases apply. 
As columns of S** are adjoined, the value of a behaves in a similar way as in 

the adjoining of rows. (By choice of (I, J ), either the J + 1 row or the I + 1 column 
is not in Case 2; thus (I + 1,J + 1) is not counted more than once.) 

When the nth column of S** and the nth row of S** are adjoined, a may be 
decreased. Because of the creations of Case 2 when other columns and rows are 
adjoined, the net result is a net loss of at most 1. Hence a(S) > I + J - 1 = n. 

Consider any indexing of the vertices of Gn. Let S be the set of vertices labeled 
1, 2, . . ., n(n - 1)/2 + 1. Since a(S) > n, there exists a pair of adjacent vertices of 
Gn, one in S and one out, such that the indices differ by at least n. Thus A > n. 

As before, A < n is clear by an example indexing. 
Using the method of the second proof of Theorem 2, it is easy to prove the 

following more general observation: 
COROLLARY. For 1 < I < n2, let T, be the subset of G, obtained by including points 
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on the diagonals i + I being constant starting with the diagonal i + j = 2 and moving 
down successive diagonals until 1 points have been obtained. If S is a subset of G, 
containing 1 vertices, then a(S) > a(T7) and, furthermore 

(ij'e 
I 

( I) 
+ > (i i1+ )+ j (i,]) e 50Ae 

The Corollary will be used in the proof for the three-dimensional grid. And the 
motivation of the proof is similar to that of the second proof of Theorem 2. 

Let g, be {(ij, k): 1 < ij, k < n} with edges between the vertices that are 
exactly one unit apart. Let V be the minimum over all indexings of g, of the 
maximum difference between the integers assigned adjacent points. For all real 
numbers a, let [a] be the greatest integer less than or equal a. 

THEOREM 3. V = [In2 + n/2] for n = 2, 3. 
Proof. If A = (ij,k) is in gn, let O(A) = i(l + 1/n) + j(1 + l/n2) + k. Then 

O(A) is, in a sense, the distance of A to (1,1,1). Note that there is a unique way to 
index the points of g, so that O(A) increases monotonically as the index of A 
increases. 

For every subset T of gn, let E(T) = 2AECTO(A). 
As in the second proof of Theorem 2, for every subset T of gn, let a(T) be the 

number of points in g, that are not in T but are adjacent to points in T. Consider a 
subset S of g, such that (i) a(S) is minimal among subsets with the same number of 
points as S and (ii) E(S) is minimal among sets which satisfy condition (i). 

Let Pi = {(ij,k): for some integers j and k, (ij,k) & S). Let Pi* be 
{(ij, k): (j, k) G T, where 1 is the number of points in Pi and T7 is as defined in the 
Corollary }. 

As in the discussion of the previous * operations, S can be compared to 
P* UP2 U ... UP* . Namely, a(S) > a((PI U *.- uI,*). A point (ij, k) of gn, but not 
of S, counts if (i) a point of S having the same i value is adjacent or (ii) either 
(i - 1,j, k) or (i + 1,j, k) is in S and (i) does not hold. Clearly, the number of points 
in each category and thus the number of points in the union is not increased by 
replacing S by P1* UP2 U ... UP* . But if P1* U ... UJ?* is not S, then E would be 
decreased, contradicting the choice of S. Hence, P1* UP2 U ... UJ* = S. 

Similarly, for the j-direction, Qj slices can be defined and it can be shown 
Q* U ... UQ* = S. And, in the k-direction, Rk slices introduced and R* U ... UR* 
- S. 

From these facts it follows that if (iojo, ko) is in S, then each of the following 
points that is in gn is in S: (iojo - 1,ko + 1), (io - lJo + 1,ko) and (io - l,jo,ko 
+ 1). Let any set (i,j, k): (ij, k) c gn and i + j + k = c} for some constant c be 
called a face. Then it is easily shown if (iojo, ko) is in S and (il ,ji, k1) is in the same 
face and 0(iojo, ko) > 0(iiIi, k), then (i4,j', k) is in S. 

Similarly, if (iojo, ko) e S and (i jo, k1) & gn and is in a face corresponding to 
a smaller constant, then (i4Ijo, k) E S. It follows that if (iojo, ko) is in S, then all 
but at most n of the points in the face, for which i + j + k = io + jo + ko - 1, are 
in Sj. Furthermore, if more than n points in the face i + j + k = io + jo + ko are in 
S, then all the points of the face i + j + k = io + jo + ko - 1 are in S. 

This incomplete description of S suffices for this proof. 
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* 

((n + 1)/2, 1, n) 1(1, ( + 1)/2, n) 

i~~~~~ 

in (n, (n + 1)/2), 1, n + 18)/2) ,1 

gn 

FIGURE 5 

Suppose n is odd and S contains (n3 - n)/2 points. The points of gn that are in 
S are determined by the earlier observations and are illustrated in Fig. 5. They are 
exactly the points (ij,k) of gn for which i+] + k < (3n3 + 3)/2 or i+] + k 
= (3n3 + 3)/2 and i < (n + 1)/2. By examining slices perpendicular to thej-axis, 
a(S) can be determined. Among the points of the form (i, 1, k), i.e. in the Q' slice, 
these points count: 

(n, 1, 2 ) n n-1, 1, 2 )' * 3 ( 2 I 1,n), i.e., 2 points. 

In Q2, these points count: 

(n, 2 ) 2,n - I & ( 2, 2n) i~e. n 2 points. 

In Q(n+l)/2, these points count: 

n+ 1\ n+ I n+ ln+l\ & n+l n+l n+3 

k'S-2 ,1J.. 2' 2' 2 k 2' 2' 2 1 
{n-l n+l1 n+A 9 2 

n + i1 . n ons 
2 9 2 2 * 2 2 n .. ons 

In Q(n+3)/2, these points count: 

( -, ' 2 31), (n-2, 2 32), ...,en,+ n n + 3 np-1i 

& n + I n + 3 n + 1\ /n + 3n i\ . ons 
2 2 9 2 JX***t,2 ,n,1,n ons 



OPTIMAL INDEXING OF THE VERTICES OF GRAPHS 831 

In Q, these points count: 

( 2+ n, 1) & ( 2 v n, 2), ( 2-1 n, 3), * * * ,( ie n, n 3 

ie., n2 points. 

Thus 

n + 1 (n + 1)/2 + n n-i n + (n + 3)/2 
(S ) 2 2 + 2 2 

= 4n2 + ~n- = [-n2 + in]. 

An estimate for V follows easily. Given an indexing of gn, let S be the set of 
points with index less than or equal (n3 - n)/2. Since a(S) > [3n2 + in], the point 
with maximum index among those adjacent to S must have an index differing by at 
least [3n2 + in]. 

Suppose n is even. If n is 2, it is clear that V = [3n2 + in]. If n is greater than 2, 
let S have n3/2 - 3/8 -3n/4 elements. The subset of g, is determined and has the 
form depicted in Fig. 5, except the vertices are the points whose coordinates are 
permutations of 1, 'n, and n. A similar analysis to the preceding gives V > 3n2 + 'n 

=[3n 2 + l n] 
As mentioned at the first of the proof, there is a unique way to index the points 

of gn from 1 to n3 in such a way that O(A) increases monotonically with increasing 
index. By easy considerations, it is clear that the maximum difference between 
adjacent indices must occur during the indexing of the middle face or faces of gn; 
and, by counting as in the preceding, this difference is [3n2 + 'n] for this indexing. 
Hence V = [-n2 + in]. 
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